The (conceptual) table of logical storage areas on
the host.
An entry shall be placed in the storage table for
each logical area of storage that is allocated and
has fixed resource limits. The amount of storage
represented in an entity is the amount actually
usable by the requesting entity, and excludes loss
due to formatting or file system reference
information.
These entries are associated with logical storage
areas, as might be seen by an application, rather
than physical storage entities which are typically
seen by an operating system. Storage such as tapes
and floppies without file systems on them are
typically not allocated in chunks by the operating
system to requesting applications, and therefore
shouldn't appear in this table. Examples of valid
storage for this table include disk partitions,
file systems, ram (for some architectures this is
further segmented into regular memory, extended
memory, and so on), backing store for virtual
memory (`swap space').
This table is intended to be a useful diagnostic
for `out of memory' and `out of buffers' types of
failures. In addition, it can be a useful
performance monitoring tool for tracking memory,
disk, or buffer usage.
Parsed from file HOST-RESOURCES-V2-MIB.mib
Module: HOST-RESOURCES-V2-MIB
The (conceptual) table of logical storage areas on
the host.
An entry shall be placed in the storage table for each
logical area of storage that is allocated and has
fixed resource limits. The amount of storage
represented in an entity is the amount actually usable
by the requesting entity, and excludes loss due to
formatting or file system reference information.
These entries are associated with logical storage
areas, as might be seen by an application, rather than
physical storage entities which are typically seen by
an operating system. Storage such as tapes and
floppies without file systems on them are typically
not allocated in chunks by the operating system to
requesting applications, and therefore shouldn't
appear in this table. Examples of valid storage for
this table include disk partitions, file systems, ram
(for some architectures this is further segmented into
regular memory, extended memory, and so on), backing
store for virtual memory (`swap space').
This table is intended to be a useful diagnostic for
`out of memory' and `out of buffers' types of
failures. In addition, it can be a useful performance
monitoring tool for tracking memory, disk, or buffer
usage.
hrStorageTable OBJECT-TYPE
SYNTAX SEQUENCE OF HrStorageEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The (conceptual) table of logical storage areas on
the host.
An entry shall be placed in the storage table for each
logical area of storage that is allocated and has
fixed resource limits. The amount of storage
represented in an entity is the amount actually usable
by the requesting entity, and excludes loss due to
formatting or file system reference information.
These entries are associated with logical storage
areas, as might be seen by an application, rather than
physical storage entities which are typically seen by
an operating system. Storage such as tapes and
floppies without file systems on them are typically
not allocated in chunks by the operating system to
requesting applications, and therefore shouldn
appear in this table. Examples of valid storage for
this table include disk partitions, file systems, ram
(for some architectures this is further segmented into
regular memory, extended memory, and so on), backing
store for virtual memory (`swap space).
This table is intended to be a useful diagnostic for
`out of memory and `out of buffers types of
failures. In addition, it can be a useful performance
monitoring tool for tracking memory, disk, or buffer
usage."
View at oid-info.com
The (conceptual) table of logical storage areas on
the host.
An entry shall be placed in the storage table for
each logical area of storage that is allocated and
has fixed resource limits. The amount of storage
represented in an entity is the amount actually
usable by the requesting entity, and excludes loss
due to formatting or file system reference
information.
These entries are associated with logical storage
areas, as might be seen by an application, rather
than physical storage entities which are typically
seen by an operating system. Storage such as tapes
and floppies without file systems on them are
typically not allocated in chunks by the operating
system to requesting applications, and therefore
shouldn't appear in this table. Examples of valid
storage for this table include disk partitions,
file systems, ram (for some architectures this is
further segmented into regular memory, extended
memory, and so on), backing store for virtual
memory (`swap space').
This table is intended to be a useful diagnostic
for `out of memory' and `out of buffers' types of
failures. In addition, it can be a useful
performance monitoring tool for tracking memory,
disk, or buffer usage.
Parsed from file Auspex_Mib.my.txt
Company: None
Module: NETSERVER-MIB
The (conceptual) table of logical storage areas on
the host.
An entry shall be placed in the storage table for each
logical area of storage that is allocated and has
fixed resource limits. The amount of storage
represented in an entity is the amount actually usable
by the requesting entity, and excludes loss due to
formatting or file system reference information.
These entries are associated with logical storage
areas, as might be seen by an application, rather than
physical storage entities which are typically seen by
an operating system. Storage such as tapes and
floppies without file systems on them are typically
not allocated in chunks by the operating system to
requesting applications, and therefore shouldn't
appear in this table. Examples of valid storage for
this table include disk partitions, file systems, ram
(for some architectures this is further segmented into
regular memory, extended memory, and so on), backing
store for virtual memory (`swap space').
This table is intended to be a useful diagnostic for
`out of memory' and `out of buffers' types of
failures. In addition, it can be a useful performance
monitoring tool for tracking memory, disk, or buffer
usage.
hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 }
hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 }
Automatically extracted from RFC2790
hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 }
hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 }
Internet Assigned Numbers Authority
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
1.3.6.1.2.1.25.2.3.1 | hrStorageEntry | 7 | 7 | A (conceptual) entry for one logical storage area on the host. As an example, an instance of the hrStorageType object might be n… |
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
1.3.6.1.2.1.25.2.1 | hrStorageTypes | 10 | 10 | None |
1.3.6.1.2.1.25.2.2 | hrMemorySize | 1 | 1 | The amount of physical main memory contained by the host. |