This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
Information represented by this MIB is passed by the
controller to those Cisco LWAPP APs, that can
operate in stand-alone mode.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ AP + + AP + + AP + + AP + + AP +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ MN + + MN + + MN + + MN + + MN +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends them to the controller to which
it is logically connected.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity is also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Native VLAN ID
A switch port and/or AP can be configured with a
'native VLAN ID'. Untagged or priority-tagged
frames are implicitly associated with the native
VLAN ID. The default native VLAN ID is '1' if
VLAN tagging is enabled. The native VLAN ID is '0'
or 'no VLAN ID' if VLAN tagging is not enabled.
Remote Edge Access Point ( REAP )
The LWAPP AP that can also act as a stand-alone AP
when it loses communication with the controller
it was associated with.
When REAP can reach the controller (connected state),
it gets help from controller to complete client
authentication. When a controller is not reachable by
REAP, it goes into standalone state and does client
authentication by itself. All data packets from
clients are either bridged locally (local-switch)
or forwarded to the controller (central-switch)
depending on the WLAN configuration.
Virtual LAN
VLAN defined in the IEEE 802.1Q VLAN standard
supports logically segmenting of LAN
infrastructure into different subnets or
workgroups so that packets are switched only
between ports within the same VLAN.
VLAN ID
Each VLAN is identified by a 12-bit 'VLAN ID'.
A VLAN ID of '0' is used to indicate 'no VLAN ID'.
Valid VLAN IDs range from '1' to '4095'.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol
Parsed from file CISCO-LWAPP-REAP-MIB.mib
Module: CISCO-LWAPP-REAP-MIB
This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
Information represented by this MIB is passed by the
controller to those Cisco LWAPP APs, that can
operate in stand-alone mode.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ AP + + AP + + AP + + AP + + AP +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ MN + + MN + + MN + + MN + + MN +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends them to the controller to which
it is logically connected.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity is also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Native VLAN ID
A switch port and/or AP can be configured with a
'native VLAN ID'. Untagged or priority-tagged
frames are implicitly associated with the native
VLAN ID. The default native VLAN ID is '1' if
VLAN tagging is enabled. The native VLAN ID is '0'
or 'no VLAN ID' if VLAN tagging is not enabled.
Remote Edge Access Point ( REAP )
The LWAPP AP that can also act as a stand-alone AP
when it loses communication with the controller
it was associated with.
When REAP can reach the controller (connected state),
it gets help from controller to complete client
authentication. When a controller is not reachable by
REAP, it goes into standalone state and does client
authentication by itself. All data packets from
clients are either bridged locally (local-switch)
or forwarded to the controller (central-switch)
depending on the WLAN configuration.
Virtual LAN
VLAN defined in the IEEE 802.1Q VLAN standard
supports logically segmenting of LAN
infrastructure into different subnets or
workgroups so that packets are switched only
between ports within the same VLAN.
VLAN ID
Each VLAN is identified by a 12-bit 'VLAN ID'.
A VLAN ID of '0' is used to indicate 'no VLAN ID'.
Valid VLAN IDs range from '1' to '4095'.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol
Parsed from file CISCO-LWAPP-REAP-MIB.my.txt
Company: None
Module: CISCO-LWAPP-REAP-MIB
This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
Information represented by this MIB is passed by the
controller to those Cisco LWAPP APs, that can
operate in stand-alone mode.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ AP + + AP + + AP + + AP + + AP +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+ +......+
+ + + + + + + + + +
+ MN + + MN + + MN + + MN + + MN +
+ + + + + + + + + +
+......+ +......+ +......+ +......+ +......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends them to the controller to which
it is logically connected.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity is also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Native VLAN ID
A switch port and/or AP can be configured with a
'native VLAN ID'. Untagged or priority-tagged
frames are implicitly associated with the native
VLAN ID. The default native VLAN ID is '1' if
VLAN tagging is enabled. The native VLAN ID is '0'
or 'no VLAN ID' if VLAN tagging is not enabled.
Remote Edge Access Point ( REAP )
The LWAPP AP that can also act as a stand-alone AP
when it loses communication with the controller
it was associated with.
When REAP can reach the controller (connected state),
it gets help from controller to complete client
authentication. When a controller is not reachable by
REAP, it goes into standalone state and does client
authentication by itself. All data packets from
clients are either bridged locally (local-switch)
or forwarded to the controller (central-switch)
depending on the WLAN configuration.
Virtual LAN
VLAN defined in the IEEE 802.1Q VLAN standard
supports logically segmenting of LAN
infrastructure into different subnets or
workgroups so that packets are switched only
between ports within the same VLAN.
VLAN ID
Each VLAN is identified by a 12-bit 'VLAN ID'.
A VLAN ID of '0' is used to indicate 'no VLAN ID'.
Valid VLAN IDs range from '1' to '4095'.
Home AP
A REAP AP can be installed at end-user home. Home
AP ethernet port will be connected to DSL or cable
modem at home. Home AP will be primed with Controller
IP Address so that it will join with controller.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol
ciscoLwappReapMIB MODULE-IDENTITY LAST-UPDATED "200704190000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. Information represented by this MIB is passed by the controller to those Cisco LWAPP APs, that can operate in stand-alone mode. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends them to the controller to which it is logically connected. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity is also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Native VLAN ID A switch port and/or AP can be configured with a 'native VLAN ID'. Untagged or priority-tagged frames are implicitly associated with the native VLAN ID. The default native VLAN ID is '1' if VLAN tagging is enabled. The native VLAN ID is '0' or 'no VLAN ID' if VLAN tagging is not enabled. Remote Edge Access Point ( REAP ) The LWAPP AP that can also act as a stand-alone AP when it loses communication with the controller it was associated with. When REAP can reach the controller (connected state), it gets help from controller to complete client authentication. When a controller is not reachable by REAP, it goes into standalone state and does client authentication by itself. All data packets from clients are either bridged locally (local-switch) or forwarded to the controller (central-switch) depending on the WLAN configuration. Virtual LAN VLAN defined in the IEEE 802.1Q VLAN standard supports logically segmenting of LAN infrastructure into different subnets or workgroups so that packets are switched only between ports within the same VLAN. VLAN ID Each VLAN is identified by a 12-bit 'VLAN ID'. A VLAN ID of '0' is used to indicate 'no VLAN ID'. Valid VLAN IDs range from '1' to '4095'. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol" REVISION "200704190000Z" DESCRIPTION "Added cLReapGroupConfigTable and cLReapGroupApConfigTable." REVISION "200604190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 517 }
ciscoLwappReapMIB OBJECT IDENTIFIER ::= { ciscoMgmt 517 }
Vendor: Cisco
Module: CISCO-LWAPP-REAP-MIB
[Automatically extracted from oidview.com]
ciscoLwappReapMIB MODULE-IDENTITY LAST-UPDATED "200704190000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. Information represented by this MIB is passed by the controller to those Cisco LWAPP APs, that can operate in stand-alone mode. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends them to the controller to which it is logically connected. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity is also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Native VLAN ID A switch port and/or AP can be configured with a 'native VLAN ID'. Untagged or priority-tagged frames are implicitly associated with the native VLAN ID. The default native VLAN ID is '1' if VLAN tagging is enabled. The native VLAN ID is '0' or 'no VLAN ID' if VLAN tagging is not enabled. Remote Edge Access Point ( REAP ) The LWAPP AP that can also act as a stand-alone AP when it loses communication with the controller it was associated with. When REAP can reach the controller (connected state), it gets help from controller to complete client authentication. When a controller is not reachable by REAP, it goes into standalone state and does client authentication by itself. All data packets from clients are either bridged locally (local-switch) or forwarded to the controller (central-switch) depending on the WLAN configuration. Virtual LAN VLAN defined in the IEEE 802.1Q VLAN standard supports logically segmenting of LAN infrastructure into different subnets or workgroups so that packets are switched only between ports within the same VLAN. VLAN ID Each VLAN is identified by a 12-bit 'VLAN ID'. A VLAN ID of '0' is used to indicate 'no VLAN ID'. Valid VLAN IDs range from '1' to '4095'. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol" REVISION "200704190000Z" DESCRIPTION "Added cLReapGroupConfigTable and cLReapGroupApConfigTable." REVISION "200604190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 517 }
ciscoLwappReapMIB MODULE-IDENTITY LAST-UPDATED "201010060000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. Information represented by this MIB is passed by the controller to those Cisco LWAPP APs, that can operate in stand-alone mode. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends them to the controller to which it is logically connected. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity is also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Native VLAN ID A switch port and/or AP can be configured with a 'native VLAN ID'. Untagged or priority-tagged frames are implicitly associated with the native VLAN ID. The default native VLAN ID is '1' if VLAN tagging is enabled. The native VLAN ID is '0' or 'no VLAN ID' if VLAN tagging is not enabled. Remote Edge Access Point ( REAP ) The LWAPP AP that can also act as a stand-alone AP when it loses communication with the controller it was associated with. When REAP can reach the controller (connected state), it gets help from controller to complete client authentication. When a controller is not reachable by REAP, it goes into standalone state and does client authentication by itself. All data packets from clients are either bridged locally (local-switch) or forwarded to the controller (central-switch) depending on the WLAN configuration. Virtual LAN VLAN defined in the IEEE 802.1Q VLAN standard supports logically segmenting of LAN infrastructure into different subnets or workgroups so that packets are switched only between ports within the same VLAN. VLAN ID Each VLAN is identified by a 12-bit 'VLAN ID'. A VLAN ID of '0' is used to indicate 'no VLAN ID'. Valid VLAN IDs range from '1' to '4095'. Home AP A REAP AP can be installed at end-user home. Home AP ethernet port will be connected to DSL or cable modem at home. Home AP will be primed with Controller IP Address so that it will join with controller. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol" REVISION "201010060000Z" DESCRIPTION "Added cLReapWlanApAuth, ciscoLwappReapWlanConfigGroupSup1, ciscoLwappReapMIBComplianceRev5. Deprecated ciscoLwappReapMIBComplianceRev4." REVISION "201002060000Z" DESCRIPTION "Added cLReapWlanClientIpLearnEnable, cLReapHomeApEnable,cLReapApLeastLatencyJoinEnable and cLReapHomeApLocalSsidReset. Updated the description for cLReapGroupUserConfigTable,cLReapGroupUserName, and cLReapGroupPassword. In module identity's description removed EAP and added Home AP. ciscoLwappReapMIBComplianceRev2 is deprecated. Added all the groups which are in ciscoLwappReapMIBComplianceRev2 to ciscoLwappReapMIBComplianceRev3. cLReapGroupRadiusPacTimeout is deprecated and created a new OID called cLReapGroupRadiusPacTimeoutCtrl. Created new group ciscoLwappReapApConfigGroupHomeAp." REVISION "200711010000Z" DESCRIPTION "Added ciscoLwappReapGroupConfigRadiusGroup and ciscoLwappReapGroupConfigUserAuthGroup." REVISION "200704190000Z" DESCRIPTION "Added cLReapGroupConfigTable and cLReapGroupApConfigTable." REVISION "200604190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 517 }
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
1.3.6.1.4.1.9.9.517.0 | ciscoLwappReapMIBNotifs | 0 | 0 | None |
1.3.6.1.4.1.9.9.517.1 | ciscoLwappReapMIBObjects | 3 | 44 | None |
1.3.6.1.4.1.9.9.517.2 | ciscoLwappReapMIBConform | 2 | 16 | None |
To many brothers! Only 100 nearest brothers are shown.
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
... | ||||
1.3.6.1.4.1.9.9.467 | ciscoCryptoAcceleratorMIB | 3 | 107 | The MIB module for monitoring the identity, status, activity and faults of crypto accelerator (CA) modules used in devices implem… |
1.3.6.1.4.1.9.9.468 | ciscoContextMappingMIB | 2 | 35 | A single SNMP agent sometimes needs to support multiple instances of the same MIB module, and does so through the use of multiple… |
1.3.6.1.4.1.9.9.470 | ciscoEnhancedSlbMIB | 3 | 106 | The MIB for managing Server Load Balancing Manager(s), and products supporting Server Load Balancing(SLB) features. This MIB exten… |
1.3.6.1.4.1.9.9.471 | ciscoFlexLinksMIB | 3 | 36 | This MIB module is for configuration and status query of Flex Links feature on the Cisco device. Flex Links are a pair of Layer 2… |
1.3.6.1.4.1.9.9.472 | ciscoModuleVirtualizationMIB | 3 | 35 | This MIB provides a way to create virtual contexts, and managing them. A virtual context is logical partition of a physical devi… |
1.3.6.1.4.1.9.9.473 | ciscoCcaMIB | 3 | 200 | The Cisco Contact Center Applications (CCCA) Management Information Base (MIB) module defines management instrumentation for appl… |
1.3.6.1.4.1.9.9.474 | ciscoFilterGroupMIB | 3 | 55 | The MIB module is for creating and configuring object groups to support packet filtering and access control on IP and other proto… |
1.3.6.1.4.1.9.9.479 | ciscoCableWidebandMIB | 3 | 77 | This is the MIB module for the support of Channel Bonding Protocol for the Cable Modem Termination System (CMTS). Wideband DOCSIS… |
1.3.6.1.4.1.9.9.480 | ciscoL4L7moduleResourceLimitMIB | 4 | 100 | The MIB module for managing resource classes and configuring limits(max/min) to different resources. The resource referenced in … |
1.3.6.1.4.1.9.9.482 | ciscoInterfaceTopNExtMIB | 3 | 16 | This MIB module is an extension to INTERFACETOPN-MIB. It provides additional management information for sorting device interfaces. |
1.3.6.1.4.1.9.9.483 | ciscoIpRanBackHaulMIB | 3 | 248 | This MIB provides information on the IP-RAN traffic from cell site to aggregation site in the following situations. In an GSM en… |
1.3.6.1.4.1.9.9.484 | ciscoNacNadMIB | 3 | 157 | This MIB module is for the configuration of a Network Access Device (NAD) on the Cisco Network Admission Control (NAC) system. End… |
1.3.6.1.4.1.9.9.485 | ciscoRttMonTCMIB | 0 | 0 | This MIB contains textual conventions used by CISCO-RTTMON-MIB, CISCO-RTTMON-RTP-MIB and CISCO-RTTMON-ICMP-MIB, but they are not … |
1.3.6.1.4.1.9.9.486 | ciscoRttMonIcmpMIB | 3 | 7 | An extension to the CISCO-RTTMON-MIB for ICMP operations. The ICMP Jitter operation provides capability to measure metrics such a… |
1.3.6.1.4.1.9.9.487 | ciscoRttMonRtpMIB | 3 | 8 | An extension to the CISCO-RTTMON-MIB for Cisco IP SLA RTP operation, Real-Time Transport Protocol(RFC 1889). This operation provi… |
1.3.6.1.4.1.9.9.488 | ciscoFirewallTc | 0 | 0 | This MIB module defines textual conventions that are commonly used in modeling management information pertaining to configuration… |
1.3.6.1.4.1.9.9.490 | ciscoNetintMIB | 3 | 11 | This MIB module is for Network Interrupt information on Cisco device. |
1.3.6.1.4.1.9.9.491 | ciscoUnifiedFirewallMIB | 3 | 235 | Overview of Cisco Firewall MIB ============================== This MIB Module models status and performance statistics pertaining … |
1.3.6.1.4.1.9.9.492 | ciscoCefMIB | 3 | 192 | Cisco Express Forwarding (CEF) describes a high speed switching mechanism that a router uses to forward packets from the inbound … |
1.3.6.1.4.1.9.9.493 | ciscoCefTextualConventions | 0 | 0 | ciscoCeftextualConventions |
1.3.6.1.4.1.9.9.494 | ciscoEntityRedunTcMIB | 0 | 0 | This module defines the textual conventions used within Cisco Entity Redundancy MIBs. |
1.3.6.1.4.1.9.9.495 | ciscoPsdClientMIB | 3 | 44 | This MIB module manages the client side functionality of the Persistent Storage Device(PSD). This MIB instrumentation is for conf… |
1.3.6.1.4.1.9.9.497 | cGgsnSAMIB | 3 | 247 | This MIB module manages the service-aware feature of Gateway GPRS Support Node (GGSN). This MIB is an enhancement of the CISCO-GG… |
1.3.6.1.4.1.9.9.498 | ciscoEntityRedunMIB | 3 | 93 | This management information module supports configuration, control and monitoring of redundancy protection for various kinds of c… |
1.3.6.1.4.1.9.9.500 | ciscoStackWiseMIB | 3 | 111 | This MIB module contain a collection of managed objects that apply to network devices supporting the Cisco StackWise(TM) technolo… |
1.3.6.1.4.1.9.9.504 | ciscoSwitchMulticastMIB | 3 | 108 | This MIB module defines management objects for the Multicast Switching features on Cisco Layer 2/3 devices. Definition of some of … |
1.3.6.1.4.1.9.9.505 | cpkiMIB | 3 | 44 | A networking device may provide several security services and protocols like SSL, SSH, IPSec/IKE etc. which need identities … |
1.3.6.1.4.1.9.9.507 | ciscoPolicyGroupMIB | 3 | 35 | The MIB module is for configuration of policy and policy group. A policy group can be described as a set of entities identified b… |
1.3.6.1.4.1.9.9.508 | ciscoSlbHealthMonMIB | 3 | 62 | An extension to the CISCO-SLB-EXT-MIB for SLB health monitoring probes. SLB: Server Load Balancing. Server load balancing provides… |
1.3.6.1.4.1.9.9.509 | ciscoWdsInfoMIB | 3 | 141 | This MIB is intended to be implemented on all Cisco network entities that provide Wireless Domain Services (WDS). The WDS provide… |
1.3.6.1.4.1.9.9.510 | ciscoErmMIB, ciscoVoiceLmrMIB | 3 | 176 | This MIB module provides management of voice tone signal as static injected tone for Land Mobile Radio The tone signal includes … |
1.3.6.1.4.1.9.9.511 | ciscoCbpTargetTCMIB | 0 | 0 | This MIB module defines Textual Conventions for representing targets which have class based policy mappings. A target can be any … |
1.3.6.1.4.1.9.9.512 | ciscoLwappWlanMIB | 3 | 249 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weigh… |
1.3.6.1.4.1.9.9.513 | ciscoLwappApMIB | 4 | 386 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.514 | ciscoLwappTextualConventions | 0 | 0 | This module defines textual conventions used throughout the Cisco enterprise MIBs designed for implementation on Central Controlle… |
1.3.6.1.4.1.9.9.515 | ciscoLwappWebAuthMIB | 4 | 43 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.516 | ciscoLwappLinkTestMIB | 3 | 57 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.518 | ciscoLwappMfpMIB | 4 | 64 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.519 | ciscoLwappIdsMIB | 3 | 28 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.520 | ciscoLwappCcxRmMIB | 3 | 45 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.521 | ciscoLwappWlanSecurityMIB | 3 | 51 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.522 | ciscoLwappDot11ClientCalibMIB | 3 | 50 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.523 | ciscoLwappClRoamMIB | 3 | 61 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.524 | ciscoLwappQosMIB | 3 | 119 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.525 | ciscoLwappTsmMIB | 3 | 57 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.529 | ciscoItpMsuRatesMIB | 3 | 61 | This MIB provides information used to manage the number of MTP3 MSUs transmitted and received per processor. Many of the higher … |
1.3.6.1.4.1.9.9.530 | ciscoNacTcMIB | 0 | 0 | This module defines the textual conventions for Cisco Network Admission Control(NAC) system. The Cisco Network Admission Control … |
1.3.6.1.4.1.9.9.532 | ciscoNATExtMIB | 3 | 13 | This MIB is an extension to the NAT-MIB. This MIB module includes objects for providing the NAT related statistics. Acronyms: NAT… |
1.3.6.1.4.1.9.9.533 | ciscoCbpTargetMIB | 3 | 25 | This MIB module defines the managed objects for representing targets which have class-based policy mappings. A target can be any… |
1.3.6.1.4.1.9.9.543 | ciscoLicenseMgmtMIB | 3 | 131 | The MIB module for managing licenses on the system. The licensing mechanism provides flexibility to enforce licensing for various… |
1.3.6.1.4.1.9.9.548 | ciscoErrDisableMIB | 3 | 43 | This MIB module provides the ability for a Network Management Station (NMS) to configure and monitor the error-disable feature vi… |
... |