This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
This MIB provides configuration and status information
about the 802.11 WLAN mobility.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ AP + + AP + + AP + + AP + + AP
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ MN + + MN + + MN + + MN + + MN
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends it to the controller to which
it is logically connected.
Basic Service Set Identifier (BSSID)
The identifier for the service set comprising of
all the 802.11 stations under the control of
one coordinating Access Point. This identifier
happens to be the MAC address of the dot11 radio
interface of the Access Point. The wireless
clients that associate with the Access Point
get the wired uplink through this particular
dot11 interface.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Mobility
Concept by which a Mobile Node can roam from one
Access Point to another Access Point, across multiple
Central Controllers, without need for repeated
authentication.
Mobility Group
A set of Central Controllers which exchange Mobile
Node's authentication information, so that the Mobile
Node upon roaming need not re-authenticate.
Mobility Anchor
When a Central Controller in the Mobility Group is
designated as Mobility Anchor, then all the Mobile
Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Guest Tunneling (GT)
The concept of designating a Central Controller in
the Mobility Group as Mobility Anchor, so that all
the Mobile Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Station Management (SMT)
This term refers to the internal management of the
802.11 protocol operations by the AP to work
cooperatively with the other APs and 802.11
devices in the network.
Ethernet over Internet Protocol (EoIP)
Ethernet over IP (EoIP) is a protocol that creates
an Ethernet tunnel between two routers on top of an
IP connection. The EoIP interface appears as an
Ethernet interface.
Reverse path filtering (RPF)
Reverse path filtering (RPF) is a feature provided
by most modern Internet Protocol routers, which may
be used to reduce the risk of customers attacking
other internet hosts. One of the problems network
service providers face today is hackers generating
packets with fake source IP addresses, a technique
known as spoofing. This is often done in order to
initiate a denial-of-service attack against another
internet host or network.
Since the source IP addresses of the incoming packets
change, often randomly, and for every packet, the
target of such an attack can't easily filter out the
attacking packets. However, the source of the attack,
i.e. the network service provider of the attacking
host, has a simple way to stop such packets from ever
leaving its network. A router always knows which
networks are reachable via any of its interfaces.
By checking the source IP address of all packets
coming in via an interface against the networks known
to be behind that interface, the router can simply
drop packets that aren't supposed to come from there.
Hence, reverse path filtering filters packets
according to the 'reverse path' to their source
address. If the path back to the source address
does not match the path the packet is coming from,
it is dropped.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications.
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol.
Parsed from file CISCO-LWAPP-MOBILITY-MIB.mib
Module: CISCO-LWAPP-MOBILITY-MIB
This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
This MIB provides configuration and status information
about the 802.11 WLAN mobility.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ AP + + AP + + AP + + AP + + AP
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ MN + + MN + + MN + + MN + + MN
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends it to the controller to which
it is logically connected.
Basic Service Set Identifier (BSSID)
The identifier for the service set comprising of
all the 802.11 stations under the control of
one coordinating Access Point. This identifier
happens to be the MAC address of the dot11 radio
interface of the Access Point. The wireless
clients that associate with the Access Point
get the wired uplink through this particular
dot11 interface.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Mobility
Concept by which a Mobile Node can roam from one
Access Point to another Access Point, across multiple
Central Controllers, without need for repeated
authentication.
Mobility Group
A set of Central Controllers which exchange Mobile
Node's authentication information, so that the Mobile
Node upon roaming need not re-authenticate.
Mobility Anchor
When a Central Controller in the Mobility Group is
designated as Mobility Anchor, then all the Mobile
Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Guest Tunneling (GT)
The concept of designating a Central Controller in
the Mobility Group as Mobility Anchor, so that all
the Mobile Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Station Management (SMT)
This term refers to the internal management of the
802.11 protocol operations by the AP to work
cooperatively with the other APs and 802.11
devices in the network.
Ethernet over Internet Protocol (EoIP)
Ethernet over IP (EoIP) is a protocol that creates
an Ethernet tunnel between two routers on top of an
IP connection. The EoIP interface appears as an
Ethernet interface.
Reverse path filtering (RPF)
Reverse path filtering (RPF) is a feature provided
by most modern Internet Protocol routers, which may
be used to reduce the risk of customers attacking
other internet hosts. One of the problems network
service providers face today is hackers generating
packets with fake source IP addresses, a technique
known as spoofing. This is often done in order to
initiate a denial-of-service attack against another
internet host or network.
Since the source IP addresses of the incoming packets
change, often randomly, and for every packet, the
target of such an attack can't easily filter out the
attacking packets. However, the source of the attack,
i.e. the network service provider of the attacking
host, has a simple way to stop such packets from ever
leaving its network. A router always knows which
networks are reachable via any of its interfaces.
By checking the source IP address of all packets
coming in via an interface against the networks known
to be behind that interface, the router can simply
drop packets that aren't supposed to come from there.
Hence, reverse path filtering filters packets
according to the 'reverse path' to their source
address. If the path back to the source address
does not match the path the packet is coming from,
it is dropped.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications.
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol.
Parsed from file CISCO-LWAPP-MOBILITY-MIB.my.txt
Company: None
Module: CISCO-LWAPP-MOBILITY-MIB
This MIB is intended to be implemented on all those
devices operating as Central Controllers (CC) that
terminate the Light Weight Access Point Protocol
tunnel from Light-weight LWAPP Access Points.
This MIB provides configuration and status information
about the 802.11 WLAN mobility.
The relationship between CC and the LWAPP APs
can be depicted as follows:
+......+ +......+ +......+ +......+
+ + + + + + + +
+ CC + + CC + + CC + + CC +
+ + + + + + + +
+......+ +......+ +......+ +......+
.. . . .
.. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ AP + + AP + + AP + + AP + + AP
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
+......+ +......+ +......+ +......+
+......+
+ + + + + + + + +
+
+ MN + + MN + + MN + + MN + + MN
+
+ + + + + + + + +
+
+......+ +......+ +......+ +......+
+......+
The LWAPP tunnel exists between the controller and
the APs. The MNs communicate with the APs through
the protocol defined by the 802.11 standard.
LWAPP APs, upon bootup, discover and join one of the
controllers and the controller pushes the configuration,
that includes the WLAN parameters, to the LWAPP APs.
The APs then encapsulate all the 802.11 frames from
wireless clients inside LWAPP frames and forward
the LWAPP frames to the controller.
GLOSSARY
Access Point ( AP )
An entity that contains an 802.11 medium access
control ( MAC ) and physical layer ( PHY ) interface
and provides access to the distribution services via
the wireless medium for associated clients.
LWAPP APs encapsulate all the 802.11 frames in
LWAPP frames and sends it to the controller to which
it is logically connected.
Basic Service Set Identifier (BSSID)
The identifier for the service set comprising of
all the 802.11 stations under the control of
one coordinating Access Point. This identifier
happens to be the MAC address of the dot11 radio
interface of the Access Point. The wireless
clients that associate with the Access Point
get the wired uplink through this particular
dot11 interface.
Central Controller ( CC )
The central entity that terminates the LWAPP protocol
tunnel from the LWAPP APs. Throughout this MIB,
this entity also referred to as 'controller'.
Light Weight Access Point Protocol ( LWAPP )
This is a generic protocol that defines the
communication between the Access Points and the
Central Controller.
Mobile Node ( MN )
A roaming 802.11 wireless device in a wireless
network associated with an access point.
Mobility
Concept by which a Mobile Node can roam from one
Access Point to another Access Point, across multiple
Central Controllers, without need for repeated
authentication.
Mobility Group
A set of Central Controllers which exchange Mobile
Node's authentication information, so that the Mobile
Node upon roaming need not re-authenticate.
Mobility Anchor
When a Central Controller in the Mobility Group is
designated as Mobility Anchor, then all the Mobile
Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Guest Tunneling (GT)
The concept of designating a Central Controller in
the Mobility Group as Mobility Anchor, so that all
the Mobile Node's traffic is tunnelled to it by other
Controllers in the Mobility Group.
Station Management (SMT)
This term refers to the internal management of the
802.11 protocol operations by the AP to work
cooperatively with the other APs and 802.11
devices in the network.
Ethernet over Internet Protocol (EoIP)
Ethernet over IP (EoIP) is a protocol that creates
an Ethernet tunnel between two routers on top of an
IP connection. The EoIP interface appears as an
Ethernet interface.
Reverse path filtering (RPF)
Reverse path filtering (RPF) is a feature provided
by most modern Internet Protocol routers, which may
be used to reduce the risk of customers attacking
other internet hosts. One of the problems network
service providers face today is hackers generating
packets with fake source IP addresses, a technique
known as spoofing. This is often done in order to
initiate a denial-of-service attack against another
internet host or network.
Since the source IP addresses of the incoming packets
change, often randomly, and for every packet, the
target of such an attack can't easily filter out the
attacking packets. However, the source of the attack,
i.e. the network service provider of the attacking
host, has a simple way to stop such packets from ever
leaving its network. A router always knows which
networks are reachable via any of its interfaces.
By checking the source IP address of all packets
coming in via an interface against the networks known
to be behind that interface, the router can simply
drop packets that aren't supposed to come from there.
Hence, reverse path filtering filters packets
according to the 'reverse path' to their source
address. If the path back to the source address
does not match the path the packet is coming from,
it is dropped.
REFERENCE
[1] Part 11 Wireless LAN Medium Access Control ( MAC )
and Physical Layer ( PHY ) Specifications.
[2] Draft-obara-capwap-lwapp-00.txt, IETF Light
Weight Access Point Protocol.
ciscoLwappMobilityMIB MODULE-IDENTITY LAST-UPDATED "200607190000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. This MIB provides configuration and status information about the 802.11 WLAN mobility. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends it to the controller to which it is logically connected. Basic Service Set Identifier (BSSID) The identifier for the service set comprising of all the 802.11 stations under the control of one coordinating Access Point. This identifier happens to be the MAC address of the dot11 radio interface of the Access Point. The wireless clients that associate with the Access Point get the wired uplink through this particular dot11 interface. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Mobility Concept by which a Mobile Node can roam from one Access Point to another Access Point, across multiple Central Controllers, without need for repeated authentication. Mobility Group A set of Central Controllers which exchange Mobile Node's authentication information, so that the Mobile Node upon roaming need not re-authenticate. Mobility Anchor When a Central Controller in the Mobility Group is designated as Mobility Anchor, then all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Guest Tunneling (GT) The concept of designating a Central Controller in the Mobility Group as Mobility Anchor, so that all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Station Management (SMT) This term refers to the internal management of the 802.11 protocol operations by the AP to work cooperatively with the other APs and 802.11 devices in the network. Ethernet over Internet Protocol (EoIP) Ethernet over IP (EoIP) is a protocol that creates an Ethernet tunnel between two routers on top of an IP connection. The EoIP interface appears as an Ethernet interface. Reverse path filtering (RPF) Reverse path filtering (RPF) is a feature provided by most modern Internet Protocol routers, which may be used to reduce the risk of customers attacking other internet hosts. One of the problems network service providers face today is hackers generating packets with fake source IP addresses, a technique known as spoofing. This is often done in order to initiate a denial-of-service attack against another internet host or network. Since the source IP addresses of the incoming packets change, often randomly, and for every packet, the target of such an attack can't easily filter out the attacking packets. However, the source of the attack, i.e. the network service provider of the attacking host, has a simple way to stop such packets from ever leaving its network. A router always knows which networks are reachable via any of its interfaces. By checking the source IP address of all packets coming in via an interface against the networks known to be behind that interface, the router can simply drop packets that aren't supposed to come from there. Hence, reverse path filtering filters packets according to the 'reverse path' to their source address. If the path back to the source address does not match the path the packet is coming from, it is dropped. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications. [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol. " REVISION "200607190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 576 }
ciscoLwappMobilityMIB OBJECT IDENTIFIER ::= { ciscoMgmt 576 }
Vendor: Cisco
Module: CISCO-LWAPP-MOBILITY-MIB
[Automatically extracted from oidview.com]
ciscoLwappMobilityMIB MODULE-IDENTITY LAST-UPDATED "200607190000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. This MIB provides configuration and status information about the 802.11 WLAN mobility. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends it to the controller to which it is logically connected. Basic Service Set Identifier (BSSID) The identifier for the service set comprising of all the 802.11 stations under the control of one coordinating Access Point. This identifier happens to be the MAC address of the dot11 radio interface of the Access Point. The wireless clients that associate with the Access Point get the wired uplink through this particular dot11 interface. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Mobility Concept by which a Mobile Node can roam from one Access Point to another Access Point, across multiple Central Controllers, without need for repeated authentication. Mobility Group A set of Central Controllers which exchange Mobile Node's authentication information, so that the Mobile Node upon roaming need not re-authenticate. Mobility Anchor When a Central Controller in the Mobility Group is designated as Mobility Anchor, then all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Guest Tunneling (GT) The concept of designating a Central Controller in the Mobility Group as Mobility Anchor, so that all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Station Management (SMT) This term refers to the internal management of the 802.11 protocol operations by the AP to work cooperatively with the other APs and 802.11 devices in the network. Ethernet over Internet Protocol (EoIP) Ethernet over IP (EoIP) is a protocol that creates an Ethernet tunnel between two routers on top of an IP connection. The EoIP interface appears as an Ethernet interface. Reverse path filtering (RPF) Reverse path filtering (RPF) is a feature provided by most modern Internet Protocol routers, which may be used to reduce the risk of customers attacking other internet hosts. One of the problems network service providers face today is hackers generating packets with fake source IP addresses, a technique known as spoofing. This is often done in order to initiate a denial-of-service attack against another internet host or network. Since the source IP addresses of the incoming packets change, often randomly, and for every packet, the target of such an attack can't easily filter out the attacking packets. However, the source of the attack, i.e. the network service provider of the attacking host, has a simple way to stop such packets from ever leaving its network. A router always knows which networks are reachable via any of its interfaces. By checking the source IP address of all packets coming in via an interface against the networks known to be behind that interface, the router can simply drop packets that aren't supposed to come from there. Hence, reverse path filtering filters packets according to the 'reverse path' to their source address. If the path back to the source address does not match the path the packet is coming from, it is dropped. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications. [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol. " REVISION "200607190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 576 }
ciscoLwappMobilityMIB MODULE-IDENTITY LAST-UPDATED "201008230000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Systems, Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS Email: [email protected]" DESCRIPTION "This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight Access Point Protocol tunnel from Light-weight LWAPP Access Points. This MIB provides configuration and status information about the 802.11 WLAN mobility. The relationship between CC and the LWAPP APs can be depicted as follows: +......+ +......+ +......+ +......+ + + + + + + + + + CC + + CC + + CC + + CC + + + + + + + + + +......+ +......+ +......+ +......+ .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + AP + + AP + + AP + + AP + + AP + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ . . . . . . . . . . . . . . . . . . . . . . . . +......+ +......+ +......+ +......+ +......+ + + + + + + + + + + + MN + + MN + + MN + + MN + + MN + + + + + + + + + + + +......+ +......+ +......+ +......+ +......+ The LWAPP tunnel exists between the controller and the APs. The MNs communicate with the APs through the protocol defined by the 802.11 standard. LWAPP APs, upon bootup, discover and join one of the controllers and the controller pushes the configuration, that includes the WLAN parameters, to the LWAPP APs. The APs then encapsulate all the 802.11 frames from wireless clients inside LWAPP frames and forward the LWAPP frames to the controller. GLOSSARY Access Point ( AP ) An entity that contains an 802.11 medium access control ( MAC ) and physical layer ( PHY ) interface and provides access to the distribution services via the wireless medium for associated clients. LWAPP APs encapsulate all the 802.11 frames in LWAPP frames and sends it to the controller to which it is logically connected. Basic Service Set Identifier (BSSID) The identifier for the service set comprising of all the 802.11 stations under the control of one coordinating Access Point. This identifier happens to be the MAC address of the dot11 radio interface of the Access Point. The wireless clients that associate with the Access Point get the wired uplink through this particular dot11 interface. Central Controller ( CC ) The central entity that terminates the LWAPP protocol tunnel from the LWAPP APs. Throughout this MIB, this entity also referred to as 'controller'. Light Weight Access Point Protocol ( LWAPP ) This is a generic protocol that defines the communication between the Access Points and the Central Controller. Mobile Node ( MN ) A roaming 802.11 wireless device in a wireless network associated with an access point. Mobility Concept by which a Mobile Node can roam from one Access Point to another Access Point, across multiple Central Controllers, without need for repeated authentication. Mobility Group A set of Central Controllers which exchange Mobile Node's authentication information, so that the Mobile Node upon roaming need not re-authenticate. Mobility Anchor When a Central Controller in the Mobility Group is designated as Mobility Anchor, then all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Guest Tunneling (GT) The concept of designating a Central Controller in the Mobility Group as Mobility Anchor, so that all the Mobile Node's traffic is tunnelled to it by other Controllers in the Mobility Group. Station Management (SMT) This term refers to the internal management of the 802.11 protocol operations by the AP to work cooperatively with the other APs and 802.11 devices in the network. Ethernet over Internet Protocol (EoIP) Ethernet over IP (EoIP) is a protocol that creates an Ethernet tunnel between two routers on top of an IP connection. The EoIP interface appears as an Ethernet interface. Reverse path filtering (RPF) Reverse path filtering (RPF) is a feature provided by most modern Internet Protocol routers, which may be used to reduce the risk of customers attacking other internet hosts. One of the problems network service providers face today is hackers generating packets with fake source IP addresses, a technique known as spoofing. This is often done in order to initiate a denial-of-service attack against another internet host or network. Since the source IP addresses of the incoming packets change, often randomly, and for every packet, the target of such an attack can't easily filter out the attacking packets. However, the source of the attack, i.e. the network service provider of the attacking host, has a simple way to stop such packets from ever leaving its network. A router always knows which networks are reachable via any of its interfaces. By checking the source IP address of all packets coming in via an interface against the networks known to be behind that interface, the router can simply drop packets that aren't supposed to come from there. Hence, reverse path filtering filters packets according to the 'reverse path' to their source address. If the path back to the source address does not match the path the packet is coming from, it is dropped. REFERENCE [1] Part 11 Wireless LAN Medium Access Control ( MAC ) and Physical Layer ( PHY ) Specifications. [2] Draft-obara-capwap-lwapp-00.txt, IETF Light Weight Access Point Protocol." REVISION "201008230000Z" DESCRIPTION "Added ciscoLwappMobilityMIBComplianceRev01 that deprecates ciscoLwappMobilityMIBCompliance. Added cLMobilityGroupRev01ConfigGroup object group." REVISION "200607190000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 576 }
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
1.3.6.1.4.1.9.9.576.0 | ciscoLwappMobilityMIBNotifs | 6 | 6 | None |
1.3.6.1.4.1.9.9.576.1 | ciscoLwappMobilityMIBObjects | 6 | 41 | None |
1.3.6.1.4.1.9.9.576.2 | ciscoLwappMobilityMIBConform | 2 | 10 | None |
To many brothers! Only 100 nearest brothers are shown.
OID | Name | Sub children | Sub Nodes Total | Description |
---|---|---|---|---|
... | ||||
1.3.6.1.4.1.9.9.529 | ciscoItpMsuRatesMIB | 3 | 61 | This MIB provides information used to manage the number of MTP3 MSUs transmitted and received per processor. Many of the higher … |
1.3.6.1.4.1.9.9.530 | ciscoNacTcMIB | 0 | 0 | This module defines the textual conventions for Cisco Network Admission Control(NAC) system. The Cisco Network Admission Control … |
1.3.6.1.4.1.9.9.532 | ciscoNATExtMIB | 3 | 13 | This MIB is an extension to the NAT-MIB. This MIB module includes objects for providing the NAT related statistics. Acronyms: NAT… |
1.3.6.1.4.1.9.9.533 | ciscoCbpTargetMIB | 3 | 25 | This MIB module defines the managed objects for representing targets which have class-based policy mappings. A target can be any… |
1.3.6.1.4.1.9.9.543 | ciscoLicenseMgmtMIB | 3 | 131 | The MIB module for managing licenses on the system. The licensing mechanism provides flexibility to enforce licensing for various… |
1.3.6.1.4.1.9.9.548 | ciscoErrDisableMIB | 3 | 43 | This MIB module provides the ability for a Network Management Station (NMS) to configure and monitor the error-disable feature vi… |
1.3.6.1.4.1.9.9.572 | ciscoRttMonIPExtMIB | 2 | 38 | This MIB contains extensions to tables in CISCO-RTTMON-MIB to support IP-layer extensions, specifically IPv6 addresses and other … |
1.3.6.1.4.1.9.9.573 | ciscoQosTcMIB | 0 | 0 | This module defines the textual conventions used within Cisco Qos MIBs. |
1.3.6.1.4.1.9.9.577 | ciscoLwappAclMIB | 3 | 26 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.578 | ciscoRoutePoliciesMIB | 3 | 5 | This module provides a subtree to define OIDs so that various routing 'policies' used by Cisco routers can be expressed. This mod… |
1.3.6.1.4.1.9.9.580 | ciscoSwitchQosMIB | 3 | 295 | This MIB module extends the CISCO-CLASS-BASED-QOS-MIB by defining configuration and statistics information specific to the qualit… |
1.3.6.1.4.1.9.9.583 | ciscoGslbTcMIB | 0 | 0 | This MIB module defines Textual Conventions and OBJECT-IDENTITIES for use in documents defining management information base (MIBs… |
1.3.6.1.4.1.9.9.584 | ciscoEntityDiagTcMIB | 0 | 0 | This module defines the textual conventions used within Cisco Entity Diag MIB. |
1.3.6.1.4.1.9.9.585 | ciscoIpSlaEthernetMIB | 3 | 194 | This MIB module consists of two parts. 1) Auto-Ethernet-CFM Control: | | 2) ethernetJitter Stats: | | The first part defines a mechani… |
1.3.6.1.4.1.9.9.586 | ciscoNotificationControlMIB | 2 | 28 | This MIB provides network management support to regulate the transmission of notifications generated by a system providing networ… |
1.3.6.1.4.1.9.9.589 | ciscoGslbSystemMIB | 3 | 103 | This MIB module defines objects for network and system information of Global Server Load Balancer(GSLB) as a network device. A G… |
1.3.6.1.4.1.9.9.590 | ciscoCvpMIB | 3 | 255 | The Cisco Unified Customer Voice Portal (CVP) application integrates with both traditional time-division multiplexing (TDM) and I… |
1.3.6.1.4.1.9.9.592 | ciscoPrefPathMIB | 3 | 56 | The MIB module for the management of preferred path. This MIB enables managers to configure and monitor Preferred Path parameters.… |
1.3.6.1.4.1.9.9.593 | ciscoFcSdvMIB | 3 | 28 | This MIB instrumentation is for managing Fibre Channel (FC) SAN Device Virtualization (SDV) solution on Cisco Fibre Channel devic… |
1.3.6.1.4.1.9.9.594 | ciscoApplicationAccelerationMIB | 3 | 37 | This is a MIB for managing Application Acceleration System(s). This MIB includes instrumentation for providing the performance st… |
1.3.6.1.4.1.9.9.595 | ciscoGslbDnsMIB | 3 | 165 | The MIB defines objects for status and statistics information of DNS related operations of Global Server Load Balancer(GSLB). Th… |
1.3.6.1.4.1.9.9.597 | ciscoContentServicesMIB | 3 | 349 | Content Service is a capability to examine IP/TCP/UDP headers, payload and enable billing based on the content being provided. Ab… |
1.3.6.1.4.1.9.9.598 | ciscoLwappAAAMIB | 3 | 73 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC), that terminate the Light Weigh… |
1.3.6.1.4.1.9.9.599 | ciscoLwappDot11ClientMIB | 4 | 49 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.600 | ciscoGslbHealthMonMIB | 3 | 90 | The MIB defines objects related to global keepalive properties in GSLB devices. It contains the tables for keep alive configurat… |
1.3.6.1.4.1.9.9.601 | ciscoResilientEthernetProtocolMIB | 3 | 77 | This MIB module defines objects required for managing Resilient Ethernet Protocol (REP). Resilient Ethernet Protocol (REP) is a C… |
1.3.6.1.4.1.9.9.602 | ciscoPacketCaptureMIB | 3 | 103 | The MIB module for the management of packet capture feature. |
1.3.6.1.4.1.9.9.603 | ciscoThreatMitigationServiceMIB | 3 | 68 | This MIB provides management information about the Threat Mitigation Service(TMS) entity named 'Consumer'. TMS is part of Cisco's… |
1.3.6.1.4.1.9.9.604 | cdot1CfmMIB | 3 | 166 | Connectivity Fault Management module for managing IEEE 802.1ag |
1.3.6.1.4.1.9.9.606 | ciscoLwappMeshLinkTestMIB | 3 | 46 | ciscoLwappMeshLinkTestMIB MODULE-IDENTITY LAST-UPDATED "200702050000Z" ORGANIZATION "Cisco Systems Inc." CONTACT-INFO "Cisco Sy… |
1.3.6.1.4.1.9.9.607 | ciscoDot11HtPhyMIB | 3 | 71 | This MIB is intended to be implemented on Cisco's WLAN devices that provide the wired uplink to wireless clients through the high… |
1.3.6.1.4.1.9.9.610 | ciscoLwappRogueMIB | 3 | 78 | This MIB is intended to be implemented on all those devices operating as Central Controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.611 | ciscoLwappDot11ClientCCXTextualConventions | 0 | 0 | This module defines the textual conventions used throughout the Cisco enterprise MIBs designed for implementation on Central Cont… |
1.3.6.1.4.1.9.9.612 | ciscoLwappDot11MIB | 3 | 17 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.613 | ciscoEvcMIB | 3 | 156 | Metro Ethernet services can support a wide range of applications and subscriber needs easily, efficiently and cost-effectively. … |
1.3.6.1.4.1.9.9.614 | ciscoLwappDot11LdapMIB | 3 | 33 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.615 | ciscoLwappRrmMIB | 3 | 28 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.616 | ciscoLwappMeshMIB | 3 | 121 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.617 | ciscoLwappMeshStatsMIB | 4 | 98 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.618 | ciscoLwappSysMIB | 3 | 163 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.619 | ciscoLwappLocalAuthMIB | 3 | 53 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.620 | ciscoLwappMeshBatteryMIB | 3 | 34 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.621 | ciscoH324DialControlMIB | 2 | 34 | This MIB module enhances the IETF Dial Control MIB (RFC2128) by providing H.324 call information over a telephony network. ITU-T R… |
1.3.6.1.4.1.9.9.622 | ciscoLwappDot11ClientTsMIB | 3 | 34 | This MIB is intended to be implemented on all those devices operating as Central controllers, that terminate the Light Weight Acc… |
1.3.6.1.4.1.9.9.623 | ciscoLwappCdpMIB | 3 | 51 | This MIB is intended to be implemented on all those devices operating as Central Controllers (CC) that terminate the Light Weight… |
1.3.6.1.4.1.9.9.624 | ciscoIpSlaTCMIB | 0 | 0 | This MIB contains textual conventions used by CISCO IPSLA MIBs. Acronyms: FEC: Forward Equivalence Class LPD: Label Path Discovery L… |
1.3.6.1.4.1.9.9.626 | ciscoDot11HtMacMIB | 3 | 40 | This MIB is intended to be implemented on Cisco's WLAN devices that provide the wired uplink to wireless clients through the high… |
... |